Identification of Arabidopsis mutants impaired in the systemic regulation of root nitrate uptake by the nitrogen status of the plant.
نویسندگان
چکیده
Nitrate uptake by the roots is under systemic feedback repression by high nitrogen (N) status of the whole plant. The NRT2.1 gene, which encodes a NO(3)(-) transporter involved in high-affinity root uptake, is a major target of this N signaling mechanism. Using transgenic Arabidopsis (Arabidopsis thaliana) plants expressing the pNRT2.1::LUC reporter gene (NL line), we performed a genetic screen to isolate mutants altered in the NRT2.1 response to high N provision. Three hni (for high nitrogen insensitive) mutants belonging to three genetic loci and related to single and recessive mutations were selected. Compared to NL plants, these mutants display reduced down-regulation of both NRT2.1 expression and high-affinity NO(3)(-) influx under repressive conditions. Split-root experiments demonstrated that this is associated with an almost complete suppression of systemic repression of pNRT2.1 activity by high N status of the whole plant. Other mechanisms related to N and carbon nutrition regulating NRT2.1 or involved in the control of root SO(4)(-) uptake by the plant sulfur status are not or are slightly affected. The hni mutations did not lead to significant changes in total N and NO(3)(-) contents of the tissues, indicating that hni mutants are more likely regulatory mutants rather than assimilatory mutants. Nevertheless, hni mutations induce changes in amino acid, organic acid, and sugars pools, suggesting a possible role of these metabolites in the control of NO(3)(-) uptake by the plant N status. Altogether, our data indicate that the three hni mutants define a new class of N signaling mutants specifically impaired in the systemic feedback repression of root NO(3)(-) uptake.
منابع مشابه
Role of the AtClC genes in regulation of root elongation in Arabidopsis
The protein family of anion channel (ClC) constitute a family of transmembrane trnsporters that either function as anion channel or as H+/anion exchanger. The expression of three genes of AtClCa, AtClCb and AtClCd in the model plant Arabidopsis thaliana were silenced by a T-DNA insertion . When the pH of the medium was slightly acidic the length of the primary root of plants with a disrupted At...
متن کاملEffect of AtNRT2.1 transgene on HATS nitrate uptake in transgenic Nicotiana plumbaginifolia
To investigate the impact of overexpression of AtNRT2.1 transgene from Arabidopsis on nitrate uptake rate and to understand the regulation of endogenous HATS by nitrate and glutamine amino acid (Gln) in tobacco plants, wild-type and transgenic (F line) plants grown on soil for 4 weeks were transferred to hydroponic culture in a controlled-environment with a 16/8h L:D photoperiod at 24? C/20...
متن کاملCharacterization of a two-component high-affinity nitrate uptake system in Arabidopsis. Physiology and protein-protein interaction.
The identification of a family of NAR2-type genes in higher plants showed that there was a homolog in Arabidopsis (Arabidopsis thaliana), AtNAR2.1. These genes encode part of a two-component nitrate high-affinity transport system (HATS). As the Arabidopsis NRT2 gene family of nitrate transporters has been characterized, we tested the idea that AtNAR2.1 and AtNRT2.1 are partners in a two-compone...
متن کاملYield and nitrogen leaching in maize field under different nitrogen rates and partial root drying irrigation
Irrigation water is limiting for crop production in arid and semi-arid areas. Furthermore, excess nitrogen (N) application is a source of groundwater contamination. Partial root drying irrigation (PRD) can be used as water saving technique and a controlling measure of groundwater N contamination. The objectives of this investigation were to evaluate the effect of ordinary furrow irrigation (OFI...
متن کاملMolecular genetic control of leaf lifespan in plants - A review
Leaf senescence constitutes the last stage of leaf development in plants and proceeds through a highly regulated program in order to redistribution of micro- and macro-nutrients from the senescing leaves to the developing/growing plant organs. Initiation and progression of leaf senescence is accompanied by massive sequential alterations at various levels of leaf biology including leaf morpholog...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Plant physiology
دوره 153 3 شماره
صفحات -
تاریخ انتشار 2010